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Abstract—The goal of this paper is to improve learning for
multivariate processes whose structure is dependent on some
known graph topology; especially when the number of available
samples is much smaller than the number of variables. Typically,
the graph information is incorporated into the learning process
via a smoothness assumption postulating that the values sup-
ported on well-connected vertices exhibit small variations. We
argue that smoothness is not enough. To capture the behavior
of complex interconnected systems, such as transportation and
biological networks, it is important to train expressive models,
being able to reproduce a wide range of graph and temporal
behaviors.

Motivated by this need, this paper puts forth a novel definition
of time-vertex wide-sense stationarity, or joint stationarity for
short. We believe that the proposed definition is natural, at it
intimately relates to existing definitions of stationarity in the time
and vertex domains. We use joint stationarity to regularize learn-
ing and to reduce computational complexity in both estimation
and recovery tasks. In particular, we show that for any jointly
stationary process: (a) one can learn the covariance structure
from O(1) samples, and (b) can solve MMSE recovery problems,
such as interpolation, denoising, forecasting, in complexity that is
linear to the edges and timesteps. Experiments with three datasets
suggest that joint stationarity can yield significant accuracy
improvements in the reconstruction effort of under-sampled
problems, even when the graph is only approximately known
or the process is only close to stationary.

Index Terms—stationarity, multivariate time-vertex processes,
harmonic analysis, graph signal processing, PSD estimation.

I. INTRODUCTION

NE of the main challenges when working with multivari-
ate processes is to learn their statistical structure from
few realizations of the process (samples). Concretely, suppose
that we wish to estimate the first two moments of a process
X € RV*T where N is the number of variables and T the
number of timesteps. If no restricting assumptions are made
(other than the first four moments are finite) then the number
of samples needed to attain statistical significance is up to
a logarithmic factor proportional to O(NT), the degrees of
freedom [1l]. Assuming that the process is time wide-sense
stationarity (TWSS) is very helpful as it reduces the degrees
of freedom of the system —and thus the sample requirement—
by a factor of 7. Even a linear dependency on N however is
often problematic in practice, when the number of variables
is large and the ability to obtain multiple samples limited.
The goal of this paper is to improve learning for the
specific cases when the multivariate process is supported on
the vertex set and is statistically dependent on the edge set
of some known graph topology. Whether examining epidemic
spreading [2], how traffic evolves in the roads of a city [3], or
neuronal activation patterns present in the brain [4], many of
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the high-dimensional processes one encounters are inherently
constrained by some underlying network. This realization
has been the driving force behind recent efforts to re-invent
classical models by taking into account the graph structure,
with advances in many problems, such as denoising [5] and
semi-supervised learning [6], [7].

Yet, state-of-the-art models for processes (evolving) on
graphs often fail to produce useful results when applied to
real datasets. One of the main reasons for this shortcoming is
that they model only a limited set of (smooth) spatio-temporal
behaviors. The well-used graph Tikhonov and total variation
priors for instance assume that the signal varies slowly or in a
piece-wise constant manner over edges, without specifying any
precise relations [8], [9]. Similarly, assuming that the graph
Laplacian encodes the conditional correlations of variables, as
is done with Gaussian Markov Random Fields [10], works
well when the graph is not available, but becomes a rigid
model when the graph is given [11]. To capture the behavior
of complex networked systems, such as transportation and
biological networks, it is important to train expressive models,
being able to reproduce a wide range of graph and temporal
behaviors.

Motivated by this need, this paper considers the statistical
modeling of processes evolving on graphs. Our results are
inspired by the recent introduction of a joint temporal and
graph Fourier transform (JFT), a generalization of GFT appro-
priate for time-varying graph signals [12]], [13]], and the recent
generalization of stationarity for graphs [14], [15], [L16]. Our
main contribution is a novel definition of time-vertex wide-
sense stationarity, or joint stationarity for short. We believe
that the proposed definition is natural, at it elegantly relates
to existing definitions of stationarity in the time and vertex
domains. We show that joint stationarity carries along im-
portant properties classically associated with stationarity: joint
wide-sense stationary (JWSS) processes can be generated by
filtering noise, and a joint Fourier transform diagonalizes their
covariance. Furthermore, our definition is intimately linked
with the familiar definitions for stationarity of multivariate
time and graph processes.

We use the hypothesis of joint stationarity to regularize
learning and to reduce computational complexity in both esti-
mation and recovery tasks. Within our framework, one learns
the covariance structure of a JWSS process from O(1) samples
and recovery (such as interpolation, denoising, forecasting)
comes with a computational complexity that is close to linear
on the number of edges and timesteps. In addition, we find that
assuming joint stationarity aids in recovery even when only an
approximation of the graph is known, or the process is only
approximately jointly stationary. We therefore propose our
model as good candidate for graph-related problems featuring



a large number of variables with only a limited number of
learning samples.

To test the utility of joint stationarity, we apply our methods
on three diverse datasets: (a) a meteorological dataset depict-
ing the hourly temperature of 32 weather stations over one
month in Molene, France, (b) a traffic dataset depicting high
resolution daily vehicle flow of 4 weekdays in the highways
of Sacramento, and (c) simulated SIRS-type epidemics over
Europe. Our experiments confirm that in the few samples
regime, assuming joint stationarity yields an improvement in
recovery performance as compared to time- or vertex-based
methods, even when the graph is only approximately known
and the data violate the strict conditions of our definition.

A. Related work

There exists an extensive literature on multivariate station-
ary processes, developing the original work of Wiener et
al. [17], [18]. The reader may find interesting Bloomberg’s
book [19] focusing on the spectral relations. We focus on two
main approaches that relate to our work, graphical models and
signal processing on graphs.

Graphical models. In the context of graphical models,
multivariate stationarity has been used jointly with a graph in
the work of [20], [21]]. Though relevant, we note that there is a
key difference of these models with our approach: we assume
that the graph is given, whereas in graphical models the graph
structure (or more precisely the precision matrix) is the learned
from the data. Knowing the graph allows us to search for more
involved relations between the variables. As such, we are not
restricted to the case that the conditional dependencies are
given by the graph (and therefore that they are sparse), but
allow non-adjacent variables to be conditionally dependent,
modeling a wider set of behaviors. We also note that our
approach is eventually more scalable. We refer to [L1] for
elements of connections between graphical models and graph
signal processing.

Graph signal processing. The idea of studying the station-
arity of a random vector with respect to a graph was first
introduced by Girault et al. [15], [22] and then by Perraudin et
al. [14]. While these contributions have different starting
points, they both propose the same definition, i.e., the one
we generalize in this contribution. Other recent contributions
relating to stationarity on graphs are [16], [23]]. Despite the
relevance of these works, it is important to stress that this paper
is the first to consider processes that are varying both in the
vertex and time domains. In addition, the analysis presented
here (particularly that of Section is novel and can
also be employed for the previously studied case of graph
stationary processes [L15], [22], [L6]. We also note that the
task of prediction using the two first statistical moments for
time-evolving signal on graphs was also considered in [24],
[25]. Nonetheless, there are a number of differences with these
works, with the most important being that we define joint
stationarity, and that we are not restricted to the causal case.

It should be noted that some results of this paper appeared
in a conference paper [26].

II. PRELIMINARIES

We consider signals supported on the vertices V =
{v1,v2,...,o5} of a weighted undirected graph G =
(V,E,W¢), with & the set of edges of cardinality E = |€]
and W the weighted adjacency matrix.

Suppose that signal x; is sampled at T' successive reg-
ular intervals of unit length. The time-vertex signal X =
[€1,T2,...,27] € RY*T is then the matrix having graph
signal x; as its t-th column. Throughout this paper, we
denote as « = vec(X) (without subscript) the vectorized
representation of the matrix X.

Harmonic time-vertex analysis. The frequency representa-
tion of a time-vertex signal X is given by the Joint Fourier
Transform [[13] (or JFT for short)

X = JFT{X} 2 GFT{DFT{X }} = U; X (U})", (1)

with Ug and Ur being, respectively, the unitary Graph Fourier
Transform (GFT) and Discrete Fourier Transform (DFT)
matrices. The notation Ug denotes the transposed complex
conjugate of Ug, U; the transpose of Ur, and (Uj)T the
complex conjugate of Ur. In vector form, we have that
& = JFT{x} 2 U; x, where Uy = Ur ® Ug and operator
(®) denotes the Kronecker product. As is often the case, we
choose Ug to be the eigenvector matrix of the combinatoria
graph Laplacian matrix L; = diag(Wgly) — W, where
1y is the all-ones vector of size N, and diag(Wg1y) is the
diagonal degree matrix. On the other hand, matrix Uy is the
eigenvector matrix of the Laplacian matrix Ly of a cyclic
graph and

e Jwrt 2n(r — 1)
Uilt, 71| = ——, with w, = ————=, 2)
for t,7 = 1,2,...,T. Note that X[n,r] is the Fourier

coefficient associated with the joint frequency [\, w,], where
An, denotes the n-th graph eigenvalue and w, the 7-th angular
frequency. For an in-depth discussion of JFT and its properties,
we refer the reader to [13], [27].

Joint time-vertex filtering. Filtering a time-vertex signal x
with a joint filter h(Lq, Ly) corresponds to element-wise mul-
tiplication in the joint frequency domain [A,w] by a function
Bt [0Amax] % [=1, 1] — R [28], [29], [13], [27]. When a
joint filter h(Lg, Lr) is applied to «, the output is

h(Le, Lr)x = U h(Ac, ) Ujz, 3)

where Ag € RV*YN and @ € RT*T are diagonal matrices
with Ag[n,n] = A\, and Q[r, 7] = w,, whereas h(Ag, Q) is
a diagonal NT' x NT matrix defined as

h()\l,wl) h()\l,OJT)
h(Ag, ) = diag :

h(An,wi) h(An,wr)

IThough we use the combinatorial Laplacian in our presentation, our results
are applicable to any positive semi-definite matrix definition of a graph
Laplacian or to the recently introduced shift operator [9].



and the diag(A) operator creates a matrix with diagonal
elements the vectorized form of A. For convenience, we will
often abuse notation and write h(6,, ;) to refer to h(\,,w;).
Furthermore, we say that a joint filter is separable, if its
joint frequency response h can be written as the product of
a frequency response h; defined solely in the vertex domain
and one hy in the time domain, i.e., A(0) = hy(w) - ha(A).

III. JOINT TIME-VERTEX STATIONARITY

Let X € RVXT be a discrete multivariate stochastic process
(with finite number of time-steps 7') that is indexed by the
vertex v; of graph G and time ¢. We refer to such processes
as time-vertex processes, or joint processes for short.

Our objective is to provide a definition of stationarity that
captures statistical invariance of the first two moments of a
joint process & = vec(X) ~ D(z,X), i.e., the mean & =
E[z] and the covariance 3 under distribution D. Crucially,
the definition should do so in a manner that is faithful to the
graph and temporal structure.

Typically, wide-sense stationarity is thought of as an in-
variance of the two first moments of a process with respect
to translation. For the first moment things are straightforward:
stationarity implies a constant mean E[x] = c1, independently
of the domain of interest. The second moment however is more
complicated as it depends on the exact form translation takes in
the particular domain. Unfortunately, for graphs translation is a
non-trivial operation and three alternative translation operators
exist: the generalized translation [30], the graph shift [9], and
the isometric graph translation [22]. Due to this challenge,
there are currently three alternative definitions of stationarity
appropriate for graphs [14]], [15]], [16], one for each definition
of translation.

The ambiguity associated with translation on graphs urges
us to seek an alternative starting point for our definition.
Fortunately, there exists an interpretation which holds promise:
up to its constant mean, a wide-sense stationary process
corresponds to a white process filtered linearly on the un-
derlying space. This “filtering interpretation” of stationarity is
well known classicallyE] and is equivalent to asserting that the
second moment can be expressed as 3 = h(Lr), where h(Lr)
is a linear filter. Thankfully, not only filtering is elegantly
and uniquely defined for graphs [30]], but also stating that a
process is graph wide-sense stationary iff E[xz] = ¢1y and
3 = h(Lg) is a graph filter, is generally consistenﬂ with
current definitions [14], [15], [16].

This motivates us to also express the definition of station-
arity for joint processes in terms of joint filtering.

Definition 1 (Joint stationarity). A joint process x = vec(X)
is called Jointly Wide-Sense Stationary (JWSS), if and only if

(a) The first moment of the process is constant E[x] = c1y7.

2As the correlation between two instants t; and 2 depends only on the
difference between these two instants E[x[t1]z[t2]] — E[z[t1]] E[z[t2]] =
~[t1 — t2], the covariance matrix has to be circulant, a property that is shared
by linear filters.

3The only exception: for graphs with repeated eigenvalues, the conditions
E[z] = c1 and ¥ = h(Lg) are sufficient but not necessary for Girault’s
graph stationarity definition [15].

(b) The covariance matrix of the process is a graph filter 3 =
h(Lg, L), where h(-,-) is a non-negative real function
referred to as joint power spectral density (JPSD).

Let us examine Definition [1| in detail.

First moment condition. As in the classical case, the first
moment of a JWSS process has to be constant over the time
and the vertex sets, i.e., X[i,t] = c for every i = 1,2,..., N
and ¢t = 1,2,...,7. For alternative choices of the graph
Laplacian with a null-space not spanned by the constant vector,
the first moment condition should be modified to requiring that
the expected value of a JWSS process is in the null space of the
matrix Ly @ L (see Remark 1 [16] for a similar observation
on graph processes).

Second moment condition. According to the definition, the
covariance matrix of a JWSS process takes the form of a joint
filter h(Lg, L), and is therefore diagonalizable by the JFT
matrix Uj. It may also be intesting to notice that the matrix
h(Lg, Lr) can be expressed as follows

H,; H, H,r

H2,1 H2,2 H2,T
Y =h(Ag, Q) = . . 4)

Hr; Hp Hror

where -
1 4
_ = wr(t1—t2)

Hy, ., = 2::1 he, (Lg) €471~ 12 )

and h,_(Lg) is the graph filter h,, = h(\ w;). Being a
covariance matrix, h(Lg, L) must necessarily be positive-
semidefinite; thus h(-,-) is real (the eigenvalues of every
hermitian matrix are real) and non-negative. Also equivalently,
that every zero mean JWSS process @ = vec(X) can be
generated by joint filtering = h(Lg, Lr)'/?¢ a white pro-
cess € with zero mean and identity covariance. The following
theorem exploits these facts to provide an interpretation of
JWSS processes in the joint frequency domain.

Theorem 1 (Frequency interpretation). A joint process X over
a connected graph G is Jointly Wide-Sense Stationary (JWSS)
if and only if:

(a) The joint spectral modes are in expectation zero

E{X[H,T]} =0 if A\, #0and w, #0.

(b) The joint graph spectral modes are uncorrelated

E {X[M,TI]X[”%W]} =0,

whenever ny #* ng or T, # To.

(¢) There exists a non-negative function h(-,-), referred to as
joint power spectral density (JPSD), such that

. 2
E|X[n, 72| - B[X[n,7]]” = h(An,w0),
foreveryn=1,2... Nand 7=1,2,...,T.

(For clarity, this and other proofs of the paper have been
moved to the appendix.)



There are two, slightly technical, points that should be
clarified here. First, for real processes X, which are the focus
of this paper, the function i forming the joint filter should
be symmetric w.r.t. w, meaning that h(A\,w) = h(\, —w).
This property can be easily derived from the definition of
the Fourier transform. Second, whenever the graph Laplacian
features repeated eigenvalues, the degrees of freedom of h
decrease, as necessarily h(A1,w) = h(A2,w) when A\; = Ao
This restriction is motivated by two observations: (a) For an
eigenspace with multiplicity greater than one, there exists an
infinite number of possible eigenvectors corresponding to the
different rotations in the space and the JPSD is in general ill-
defined. The condition h(A1,w) = h(A2,w) when A\ = Ao
deals with this ambiguity, as it ensures that the JPSD is the
same independently of the choice of eigenvectors. (b) If one
were to pick a ring graph and only one time step (1" = 1), this
condition ensures that joint stationarity is equivalent to classic
stationarity in the periodic discrete case. We refer to [14,
Section III B] for a detailed discussion.

We briefly present two additional properties of JWSS pro-
cesses that will be useful in the rest of the paper.

Property 1 (White noise). White centered i.i.d. noise w &
RNT ~ D(Onr, InT) is JWSS with constant JPSD for any

graph.

The proof follows easily by noting that the covariance of w
is diagonalized by the joint Fourier basis of any graph 3,, =
I = U;IU;. This last equation tells us that the JPSD is
constant, which implies that similar to the classical case, white
noise contains all joint frequencies.

A second interesting property of JWSS processes is that
stationarity is preserved through a filtering operation.

Property 2. When a joint filter f(Lg, Lr) is applied to a
JWSS process X with JPSD h, the result Y remains JWSS
with mean cf(0,0)1y1 and JPSD f2(\,w)h(\,w).

A. Relations to classical definitions

We next provide an in depth examination of the relations
between joint stationarity, the classical definition of time
stationarity and that of vertex stationarity.

If no assumptions are made about the process, the covari-
ance is simply

i1 X2 ST
o1 X292

Y= .
271 27T

When assuming that a process is JWSS, we in fact enforce
that the statistical relation of variables at a given time-step
3,,+, and those across different timesteps 3 ., should
depend on the graph, as well as the time difference t; — to.
The properties of the covariance matrix of a JWSS process
can be decomposed into time and vertex dependencies.

1) JWSS C TWSS. Similar to time stationary processes,
the covariance 3 of a JWSS process has a block circulant

structure, as X, ;, = 35,1 = L5, where 6 = t; —to + 1.
Hence the covariance matrix can be written as

rh Iy I'r
I'r Iy I'r_y

Ew - . . 5
ry, Ty --- T,

implying that correlations only depend on § and not on any
time localization. This property is shared by multivariate time
wide sense stationary processes.

Definition 2 (Multivariate time stationarity). A joint process
X is Time Wide-Sense Stationary (MTWSS), if and only if the
following two properties hold

(a) The expected value is constant as E[x;] = c1 for all t.

(b) For all ti,ty the second moment satisfies X, .,
Y51 =I5, where 6 =t —ta + 1.

Similarly to the univariate case, the Time Power Spectral
Density (TPSD) is defined so as to encode the statistics of the
process in the spectral domain:

T
I, =) Tse/“r
6=1

We can also obtain the TPSD of a JWSS process by construct-
ing a graph filter from h while fixing w. Setting Ay, (\) =
h(\,w;), the TPSD of a JWSS process is I'; = hy,_(Lg).

(6)

2) JWSS C VWSS. It follows from Definition that, for a
JWSS process, each block of ¥ has to be a linear graph filter,
i.e., 3y, 1, = Y.t (Le). Hence, the covariance matrix can be
written as

’Y1,1(LG) 71,2(LG) 71,T(LG)
v2,1(La)  72,2(La)

Y= .
’YT,I.(LG) VT,TkLG)

The concept of stationarity has been generalized to graph
signals [[14], [15], [16]. For no repeated eigenvalues, all the
above state that a random signal is stationary on a graph
if its expected value is constant on the vertex set, and the
covariance matrix is jointly diagonalizable with the Laplacian,
ie, ¥;, = h(Lg). This notion of stationarity does not
apply to time evolving processes as it does not characterize
the correlation between different time-steps. As a result, we
present here a generalization of this framework to timeseries
on a graph.

Definition 3 (Multivariate vertex stationarity). A joint process
X = [xy,xa,...,x7] is called Multivariate Vertex Wide-
Sense Stationary (MVWSS), if and only if the following two
properties hold independently:

(a) The expected value is of the signal is constant E x| =
c:1 for all t.

(b) For all ti and ty, we have X, .,, there exist a kernel
Ver b SUch that 3y, 1, = v, 1, (La).



3) JWSS = TWSS N VWSS. As shown next, the two defini-
tions taken together are equivalent to that of joint stationarity.

Theorem 2. A joint process X is JWSS if and only if it is
both MTWSS and MVWSS.

In other words, the set of processes that are JWSS are
exactly those that are statistically invariant in the temporal
and vertex domains.

IV. JOINT POWER SPECTRAL DENSITY ESTIMATION

The joint stationarity assumption can be very effective in
overcoming the challenges associated with dimensionality. The
main reason is that, for JWSS processes, the estimation vari-
ance is decoupled from the problem size. Concretely, suppose
that we want to estimate the covariance matrix ¥ of a joint
process = vec(X) from K samples T(1), T(2);- -+ T(K)-
As we show in the following, if the process is JWSS such
that 3 = h(Lg, Lt), estimation is possible from K = O(1)
samples! This is a sharp decrease from the classical and
MTWSS settings, for which K ~ NT and K ~ N samples
are necessaryﬂ respectively.

This section presents two JPSD estimators requiring con-
stant number of samples. The first provides unbiased estimates
at complexity that is O(N3Tlog(T)). The second estimator,
decreases further the estimation variance at a cost of a bounded
bias, and can be approximated at complexity linear to ET.

A. Sample JPSD estimator

We define the “sample JPSD estimator” for every graph
frequency )\, and temporal frequency w, as the estimate

: K IFT{X 7|
)éz| {X ()}, 7| ' o
k=1

h(An, wr e
In case the process does not have zero mean, it should be
centered by subtracting the constant signal c1xy17, where
¢ =2 _.i+X (i t]. For simplicity, suppose that the process
is correctly centered. As the following theorem claims, the
sample JPSD estimator is unbiased and its variance decreases
linearly with the number of samples K.

Theorem 3. For every distribution with bounded second and

fourth order moments, the sample JPSD estimator h(6)
(a) is unbiased, i.e., E [h(@)} = h(0), and
: —1
(b) has variance Var {h(@)} = h%(0) ’YT
where constant vy depends only on the distribution of x.

Proof. For any 0 = [\, w], the sample estimate is

K 2 Ak
; (k)€ (k)
h(0) = h(0
O =hO)y — ®)
k=1
with £ being independent realizations of &, a zero mean
complex random variable with unit variance. To see this,
writte © = h(Lg, Ly)"/?e, where the random vector e

4The number of samples needed for obtaining a good sample covariance
matrix of an n-dimensional process is O(nlogn) [11, [31].

has zero mean and identity covariance. Then, the complex
random variable ¢ is the JFT coefficient of € corresponding
to frequencies A and w. The bias follows by noting that
E é(k)é’(*k) = 1, for every k. The variance is computed
similarly by exploiting the fact that different terms in the sum
are independent as they correspond to distinct realizations and
setting v = E[|¢|*]. O

For the standard case of a Gaussian joint process, we
provide an exact characterization of the distribution.

Corollary 1. For every Gaussian JWSS process, the sample
JPSD estimate follows a Gamma distribution with shape K /2
and scale 2h(0)/ K. The estimation error variance is equal to

Var [h(o)} —212(0)/K.

Proof. We continue in the context of the proof of Theorem [3]
For a Gaussian distribution, € is centered and scaled Gaussian
and thus £? is a chi-squared random variable with 1 degree of
freedom. Our estimate is therefore a scaled sum of i.i.d. chi-
squared variables and corresponds to a Gamma distribution.
The corollary then follows directly. O

Observe that the variance depends linearly on the fourth
other moment of |€| (see proof of Theorem [3) and is inversely
proportional to the number of samples, but it is independent
of N and T'. In the following, we show how to achieve an
even smaller variance by exploiting the properties of h(6). In
addition, we reduce the estimation accuracy by avoiding to
perform an eigenvalue decomposition.

B. Convolutional JPSD estimator

When the number of available signals K is very small (even
1), we need an additional assumption on the correlations to
obtain reasonable estimates. To this end, we next present a
parametric JPSD estimator that allows us to trade off variance
for bias.

Before delving into JWSS processes, it is helpful to consider
the purely temporal case. For a TWSS process it is customary
to assume that the autocorrelation function has support L
that is a few times smaller than 7'. Then, cutting the signal
into % smaller parts and computing the average estimate,
reduces the variance (by a factor of %), without sacrificing
frequency resolution. This basic idea stems from two estab-
lished methods used to estimate the PSD of a temporal signal,
namely Bartlett’s and Welch’s methods [32]], [33]. The act of
averaging across different windows is in fact equivalent to
a convolution in the spectral domain. Convolving the TPSD
with a window, results in attenuation of the correlation for
large delays, enforcing localization in the time domain.

Motivated by the observation that convolution with a win-
dow in the graph frequency domain also encourages localiza-
tion in the vertex domain when the operation can be approx-
imated by a polynomial with bounded order [30, Theorem
1 and Corollary 2], Perraudin and Vandergeynst proposed
to reduce the estimation variance by convolving the sample
GPSD [14]. In the following, we extend this idea to the joint
domain. Concretely, Let g(f) be a 2D window defined in the



joined frequency domain. We define our convolutional JPSD
estimator as

9(0 - gn,'r)2 h(en,T)a (9)

where, c4(0) = >, .90 — 0, .)? is a normalization factor
that depends on the 6 = (A, w) frequency pair (since the
graph eigenvalues are generally irregularly spaced). Moreover,
h(0,,+) is the sample estimate defined in (7). Further imple-
mentation specifics, including a discussion on the choice of
the 2D window g, are given in Section

The convolutional JPSD estimator is a generalization of
known PSD estimators for TWSS and GWSS processes.
Denote by ¢ the dirac function. We have that: (a) For ¢g(6) =
®(A)-gr(w), we recover the classical TPSD estimator, applied
independently for each A. (b) For ¢(8) = ga(\) - d(w), we
recover the GPSD estimator from [14] applied independently
for each w.

To provide a meaningful bias analysis, we introduce a
Lipschitz continuity assumption on the JPSD, matching the
intuition that localized phenomena tend to have a smooth
representation in the frequency domain.

Theorem 4. The convolutional JPSD estimator h(6)
(a) has bias

T,N

> 90— 00)7 10— Onrly

n=1,7=1

€

cq(0)

where ¢ is the Lipschitz constant of h(9), and
(b) when the entries of X are independent random variables,
its variance is

vas )] = 32 80t

where Var [h(@,”)} is the variance of the sample JPSD
estimator at Oy, ;.

’E [6) — n(0)] ] <

Var [h(e )] ,

Proof. The derivations of the bias and variance are given in
Lemmas [T] and 2] respectively. O

Let us consider as an example the case of a Gaussian
JWSS process and a disc window with bandwidth B, i.e.,
gp(0) = 1if |0, < £ and 0, otherwise. Though not
necessarily localized in the graph domain, we choose here a

disc window because it leads to simple and intuitive estimates.

Corollary 2. For every e-Lipschitz Gaussian JWSS process
and disc window gp(0), the convolutional estimate has

’E ['h(a) - 215

KlS|”

with set 8 = {0y | |0n,- — 0], < B/2} and h% =
h(0n.r)?
220, .8 18T

Proof. The results follow from Theorem [4] and Corollary [1] by
noting that when a disc window is used: (a) ¢,(6) = |S|, and
() g(0 — 0,.)% = 1 for all n,7 in the window (there are

9)” < ? and Var [7'1(9)} - (10)

|S| in total) and zero otherwise. The independence condition
required by the variance clause of the theorem is satisfied since
& is Gaussian (as a rotation £ = Ujx of a Gaussian vector)
with diagonal covariance. O

The above result suggests that, by selecting our window
(bandwidth) we can trade off bias for variance. The trade-off
is particularly beneficial as long as (a) the JPSD is smooth, and
(b) the graph eigenevalues are clustered, such that |S| > B.
We also note that a special case of our results (7" = 1) is novel
also for the purely graph setting [[14]].

C. Fast implementation

Having defined the convolutional JPSD estimator, we turn
to its computation. A straightforward implementation re-
quires: O(N3) operations for computing the eigenbasis of our
graph, O(N? x KT) for performing KT independent GFT,
O(Tlog(T) x KN) for KN independent FFT, and O(N2T?)
for the convolution.

This section describes how to approximate a convolutional
estimate using a number of operations that is linear to ET.
Before describing the exact algorithm, we note two_helpful
properties of the estimator. First, we can compute h(6) by
obtaining estimates for each X(;) independently and then
averaging over k:

h(On.7) = 2299 On.2)?* JFT{X (1)}, 7]|”

n,T

As we will see in the following, the terms inside the outer
sum can be approximated efficiently, avoiding the need for an
expensive JFT. In addition, when the convolution window is
separable, i.e., g(0) = gg()\) - gr(w), as is assumed here, the
joint convolution can be performed independently (and at any
order) in the time and vertex domains

) (A — )\
DN e PR ) B
C.‘]T Cgc
where c4(0) = cgp. (w) - ch(A). Exploiting this property, we

treat the implementation of the two convolutions separately
and the presented algorithms can be combined in any order.

Fast time convolution. This is the textbook case of TPSD esti-
mation, that is solved by the Welch’s method [33]]. The method
entails splitting each timeseries into equally sized overlapping
segments, and averaging over segments the squared amplitude
of the Fourier coefficients. The procedure is equivalent to an
averaging (over time) of the squared coefficients of a Short
Time Fourier Transform (STFT), with half overlapping win-
dows wr defined such that DFT{wr(t)} = gr(w) [34], [33].
Let L be the support of the autocorrelation, or equivalently
the number of frequency bands. We suggest using the iterated
sine window
A {sin (0.577 cos (Wt/L)Z) ifte[-L/2,L/2]
wr(t) =
0 otherwise,
as it turns the STFT into a tight operator. In order to get an
estimate of /, at unknown frequencies, we interpolate between
the L known points using splines [36].



Fast graph convolution. Inspired by the technique of [14]], we
perform the graph convolution using an approximated graph
filtering operation [37] that scales linearly to the number of
graph edges E. In particular,

N
A—\)? Lo — M -1I13
—1 Cge(A) Cge(N)
We suggest using the Gaussian window
2/ 2
96 = A) 2 em A = A)7/0” (12)

with 02 = 2(F + 1)Amax/F?. As we did before, we only
compute the above for F' = O(1) different values of A and
approximate the rest using splines. As the eigenvalues are not
known, we need a stable way to estimate ¢y, (A). We obtain
an unbiased estimate by filtering @ = O(1) random Gaussian
signals on the graph € € RN ~ N(0, Iy), such that

Q
oo (V) =E | llga(La — My)egll3 ] ,

g=1

13)

with variance equal to 227]:/:1 g*(An — A)/Q. We omit the
analysis, as it is similar to that in Theorem [3] According to
our numerical evaluation, the approximation error introduced
by the latter estimator and spectral filtering is almost negligible
for smooth JPSD.

Complexity. The computational cost of the above methods is:
() OTKF x E+ QF x E) = O(TK + Q)EF) for the
fast graph convolutions. Here, the 7K and () convolutions are
performed in order to estimate the quantities at (TT) and (13)
for F' different values of A. (b) O(NK x Tlog(L)) for the
fast time convolution, corresponding to N K STFT. Thus, in
total the complexity of the fast convolutional JPSD estimator
is OTKFE + QEF + NKTlog(L)). Furthermore, when
Q, F, K are constants, the complexity simplifies to O(T'E +
NTlog(L)). We remark that, though asymptotically superior,
the fast implementation can be significantly slower when the
number of variables is small. Our experiments demonstrate
that it should be preferred for N larger than a few thousands
(see Figure [2).

V. RECOVERY OF JWSS PROCESSES

This section considers the MMSE problem of recovering a
hidden JWSS process = vec(X) from linear measurements
y corrupted by a zero-mean JWSS process w:

E[||f(y) — ]3]
subject to y = Ax + w

We remark that (a) for A binary diagonal and w = 0, (P0)
is an interpolation problem, (b) for A diagonal with A;; =1
if # < Nt and zero otherwise and w = 0 it corresponds to
forecasting, and (c) for A = I and w white noise (P0) is a
denoising problem.

Since the solution of (P0) is in general distribution depen-
dent, we additionally postulate that the function f is linear
on y, i.e., there exists a matrix W and a vector b such that

min
f RN RN (P0)

f(y) = Wy+b. The minimum mean-squared linear estimate
is then known to be

& =3eyX  (y—9g)+ T (14)

Above, 3, = AYA* + X, and 3., = 3 A*. Obtaining &
therefore entails solving a linear system in matrix 3, that
-naively approached- has O(N?2T?) complexity. In addition,
especially in the noise-less case, the condition number of X,
can be infinite, rendering direct inversion unfeasible.

We next discuss how to deal with these issues:

Decreasing the complexity. Thankfully, even if 3, is not
always sparse, we can approximate its multiplication by a
vector very efficiently as (a) A usually is very sparse, and (b)
per our assumption ¥ and 35, are joint filters and therefore
they can be implemented at complexity that is (up to logarith-
mic factors) linear to the number of edges E and timesteps
T [12], [29], [27]. Therefore, if we employ an iterative method
such as the (preconditioned) conjugate gradient to compute the
solution, the complexity of each iteration will be almost linear
on the problem size.

Singular or badly conditioned .. In this case, we choose
the solution with the minimal residual

& =X, (y—y)+z (15)

Instead of solving the normal equations
& = Say(S5) 'Sy (y — 9) + T,

which has the effect of significantly increasing the condition
number of our matrix, we suggest to employ the minimal resid-
ual conjugate gradient method for symmetric matrices [38].
The latter, though it is guaranteed to converge in at most
NT iterations, has often much faster convergence. For badly
conditioned covariance matrices, an alternative solution is to
rewrite the problem as a regularized least squares problem

min [[Az — y[3 + [|hw(Le, Ir) " ha(La, Ir) " (2 — @)|l3
(16)
and solve it using a fast iterative shrinkage-thresholding al-
gorithm (FISTA) scheme [39], [40], [41]]. This problem was
shown to converge to the correct solution when w is white
noise [14]]. There is a good reason for transforming the prob-
lem in this way: the FISTA convergence is a linear function
of 2||A*Al|2, ie., the Lipschitz constant of the gradient of
||Az — yl|3, but not the condition number of h.,(Lg, Lt)
and hy(Lg, Ly) [42]. As such, it convergences faster when
the conditioning of 3, is very poor and A is well behaved.
Similarly, in the noise-less case one solves
min

min g (Lo In) (2 - @) 3
subject to Az =y,

(17)
using a Douglas-Rachford scheme [43]].

A special case. When matrix A is a joint filter and therefore
A = a(Lg, Lr), the solution can be obtained by a single
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Fig. 1: Influence of the parameters (window size L and number of graph filters F') on the (a) estimation error, (b) bias, (c)
normalized std. dev., and (d) execution time. For improved visibility, the scale of (c) has been changed.

application of a Wiener-type filter f(Lq, L) with
ha (A, w) a(A, w)

a2\, w)hg (N, w) + heyp(N, W)

The most common case when this happens is when solving

a denoising problem, since A = I corresponds to the trivial

joint filter with a(\,w) = 1, for all A and w. Wiener filters

were classically proposed in [44]. The first generalizations to

graph signals appear in and pp 100] and were studied
in more detail in .

fAw) = (18)

VI. EXPERIMENTS
A. Joint Power Spectral Density Estimation

The first step in our evaluation is to analyze the efficiency of
JPSD estimation. Our objective is dual. First, we aim to study
the role of the different method parameters into the estimation
accuracy and computational complexity, essentially providing
practical guidelines for their usage. In addition, we wish to
illustrate the usefulness of the joint stationarity assumption
in learning from few samples, even when the graph is only
approximately known.

Variance-bias-complexity tradeoffs. To validate the analysis
of Section [[V-C] for the computational and accuracy trade-
offs inherent to our JPSD estimation method, we performed
numerical experiments with random geometric graphs (N =
256 vertices and average degree slightly above 7) and JWSS
processes (1" = 128 timesteps). For simplicity, we focus on the
standard setting of a Gaussian process with smooth and sepa-
rable JPSD that is exponentially decreasing with frequency:
h(f) = e M e=5<" In our experience, similar JPSD
are commonly found in data with smooth spatio-temporal
structure, such as for instance in meteorological datasets. We
remark that the presented results were found consistent with
those obtained for non-separable JPSD. In this section, we
examine the relation between the real JPSD H = h(Ag, Q)
and the convolutional estimate H = h(Aq,$2). We use the
following metrics:

error bias variance
Bl|a-n| || |ela]-#] | ef|#-ela]]
F F F
IH | |H | IH ||

where E [-] is the sample average from 20 independent exper-
iments.
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Fig. 2: Scalability of the convolutional JPSD estimator. The
fast implementation should be favored when the graph is
composed of more than a few thousands vertices. The approxi-
mation error inherent in the fast implementation was negligible
in our experiments.

We remind the reader that there are two parameters influ-
encing the performance of the convolutional JPSD estimator:
the window size L corresponding to our assumption for the
support length of the autocorellation in time, and the number
of graph filters F' used to capture power density in the graph
spectral dimension. Figures [T] (a-d) report four key metrics for
an exhaustive search of L, F' combinations. We observe that
large values of F' and L generally reduce the estimation error
(Figure [Ta) because they result in reduced bias (Figure [ID).
Nevertheless, setting the parameters to their maximum values
is not suggested as the variance is increased (Figure [Ic). In
Figure [Id| we see that, utilizing a large number of filters and
number of windows (i.e., large F' and small L), increases the
average execution time.

Figure [2] delves further into the issue of scalability. In
particular, we examine the min/median/max execution time
of the convolutional JPSD estimator for increasing problem
sizes when run in a desktop computer. Though the setting
is identical to the previous experiments, here the number of
vertices is varied from 1000 to 9000. We compare two imple-
mentations. The first, which naively performs the convolution
in the spectral domain, uses the eigenvalue decomposition and
therefore scales quadratically with the number of vertices. Due
to its optimized code and simplicity, this should be the method
of choice when NV is small. For larger problems, we suggest
using the fast implementation. As shown in the figure, this
implementation scales linearly with N (here E = O(N)) when
the number of filters F' and timesteps 1" are held constant.

How to choose L and F'? Having no computational con-
strains, one should choose the parameter combination that
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from very few samples. The joint stationarity prior becomes
especially meaningful when the number of variables (/V,7T)
increases.

minimized the Akaike information criterion (AIC) score
AIC = 2FL — 21n(f), where £ is the distribution dependent
estimated likelihood / = P(x|X), and ¥ is the estimated
covariance based on the convolutional JPSD estimator with
parameters L and F' [46]]. This procedure is often unfeasible
as it is based on computing each model’s log-likelihood and
thus entails estimating one JPSD for each parameterization
in consideration (as well as knowing the distribution type).
We have found experimentally that setting F' = min(V, 50)
provides a good trade-off between computational complexity
and error. On the other hand, we suggest setting L equal to
an upper bound of the autocorrelation support.

Learning from few samples and a noisy graph. Figure [3]
illustrates the benefit of a joint stationarity prior as com-
pared to (a) a sample covariance estimator which makes no
assumptions about the data, and (b) the multivariate TWSS
process estimator with optimal bandwidth [17]. As expected,
an accurate estimation is challenging when the number of
samples is much smaller than the number of problem variables
(NT), returning errors above one for the sample estimator.
Introducing stationarity priors regularizes the estimation re-
sulting in more stable estimates.

What is perhaps surprising is that, even when the graph
(and Ug) are known only approximately, estimating the second
order moment of the distribution using the joint stationarity
assumption is beneficial. To portray this phenomenon, we
also plot the estimation error when using a noisy graph
(we corrupted the weighted adjacency matrix by Gaussian
noise, with SNR = 10 dB). Undoubtedly, introducing noise to
the graph edges negatively affects estimation by introducing
bias. Still, even with noise the proposed method significantly

outperforms purely time-based methods when less than NT'
samples are available.

B. Recovery Performance on Three Datasets

We apply our methods on three diverse datasets featuring
multivariate processes evolving over graphs: (a) a weather
dataset depicting the temperature of 32 weather stations over
one month, (b) a traffic dataset depicting high resolution daily
vehicle flow of 4 weekdays, and (c) SIRS-type epidemics in
Europe. Our experiments aim to show that joint stationarity is
a useful model, even in datasets which may violate the strict
conditions of our definition, and that -especially when few
samples are available- it can yield a significant improvement
in recovery performance, as compared to time- or vertex-based
methods, on real datasets.

Experimental setup. We split the K samples of each dataset
into a training set of size p; K and a test set of size (1—p;) K,
respectively. After estimating the JPSD from the training set,
we attempt to recover the values of py; NT variables randomly
discarded from the test set. In each case, we report the
RMSE for the recovered signal normalized by the ¢3-norm
of the original signal. We compare our joint method to the
state-of-the-art wiener filters assuming univariate time/vertex
stationarity [14]]. Univariate stationarity methods solve the
statistical recovery problem under the assumption that signals
at stationary in the time/vertex domains, but considering
different vertices/timesteps as independent. These methods
are known to outperform non-model based methods, such as
Tikhonov regularization (ridge regression) and total-variation
regularization (lasso) over the time or graph dimensions [8],
[9]. We also compare to the more involved multivariate TWSS
model where the values at different vertices are correlated and
the covariance is block Circulant of size NT x NT. The latter
is only shown for the weather dataset as the large number of
variables present in the other datasets (e.g., =~ 10® parameters
for the traffic dataset) prohibited computation.

Molene dataset. The French national meteorological service
has published in open access a dataselE] with hourly weather
observations collected during the Month of January 2014 in
the region of Brest (France). The graph was built from the
coordinates of the weather stations by connecting all the neigh-
bors in a given radius with a weight function Wg(iy,is] =
exp(—kd(iy,i2)?), where d(iy,iz) is the euclidean distance
between the stations i; and ¢5. Parameter k£ was adjusted to as
obtain an average degree around 5 (k however is not a sensitive
parameter). We split the data in K = 15 consecutive periods
of T' = 48 hours each. As sole pre-processing, we removed the
mean (over time and stations) of the temperature. Since NT'
is here relatively small, we used the sample JPSD estimator.

We first test the influence of training set size p;, while
discarding p; = 30% of the test variables. As seen in
Figure fa] the multivariate TWSS approach provides good
recovery estimates when the when the number of samples

5 Access to the raw data is possible directly from https://donneespubliques.
meteofrance.fr/donnees_libres/Hackathon/RADOMEH.tar.gz
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becomes especially meaningful when the available data are
few.
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Fig. 5: Experiments on Sacramento highway flow. By exploit-
ing both graph and temporal dimensions, the joint approach
closely captures the subtle variations in traffic throughout each
weekday.

is large, approaching that of joint stationarity, but suffers
for small training sets (though not shown in the figure, the
mean error was 9.8 when only p; = 10% of the data was
used for training). Due to their stricter modeling assumptions,
disjoint stationarity methods returned relevant estimates when
trained from very few samples, but exhibited larger bias.
Figure [4B] reports the achieved errors for recovery problems
with progressively larger percentage 5% < pg < 95% of
discarded entries for a training percentage of p; = 20%. We
can observe that the error trends are consistent across all cases.

Traffic dataset. The California department of transportation
publishes high-resolution traffic flow measurements (number
of vehicles per unit interval) from stations deployed in the
highways of Sacrament(ﬂ We focused at 727 stations over
four weekdays in the period 01-06 April 2016. Starting
from the road connectivity network obtained by the Open-
StreetMap.org, we constructed one timeseries for each high-
way segment by setting the flow over it to be a weighted
average of all nearby stations, while abiding to traffic direction.
This resulted in a graph of N = 710 vertices, and a total of
T = 24 x 12 measurements per day for K = 4 days. We used
the convolutional JPSD estimator with parameters L = T'/2
and F' = 75, which were experimentally found to give good
performance in the training set.

Figures [5a and [5b] depict the mean recovery errors when
the training sets where 1 and 3 days respectively. The strong
temporal correlations present in highway traffic were useful in
recovering missing values. Considering both the temporal and
spatial dimension of the problem, resulted in very accurate
estimates, with less that 0.04 error when p; =50% of the data
were removed and the PSD was estimated from one day.

SIRS epidemic. Our third dataset depicts the spread of an
infectious disease over N = 200 major cities of Europe, as
predicted by the Succeptible-Infected-Recovered-Susceptible
(SIRS) model, one of the standard models used to study epi-
demics. Our intention is to examine the predictive power of the
considered methods when dealing with different realizations
of a non-linear and probabilistic process over a graph (the
data are fictitious). We parameterized SIRS as follows: length
of infection period: 2 days, length of immunity period: 10
days, probability of contagion across neighboring cities per
day: 0.005, total period: 7' = 180 days. We generated a total
of K = 10 infections, all having the same starting point. We
also used the sample JPSD estimator. As shown in Figures [6a]
and [6B] the attained results were consistent with the weather
and traffic datasets.

We remark that our simulations were done using the GSP-
BOX [47], the UNLocBoX [48], and the LTFAT [49]. The
code reproducing our experiments is available at https://lts2.
epfl.ch/stationary-time-vertex-signal-processing/.

VII. CONCLUSION

This paper proposed a novel definition of wide-sense sta-
tionarity appropriate for multivariate processes supported on
the vertices of a graph. We showed that JWSS processes
possess a number of familiar properties: they can be generated
by filtering noise, and a joint Fourier transform diagonalizes
their covariance. Furthermore, our model connects to time and
vertex wide sense stationarity for multivariate processes.

Our model presents two key benefits. First, the estimation
and recovery of JWSS processes is very efficient, both in terms
of sample and computational complexity. In particular, the
JPSD of a JWSS process can be estimated from very few
(constant) number of samples at a complexity that is roughly

The data correspond to the 3rd district of California and can be downloaded
from http://pems.dot.ca.gov/
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Fig. 6: Experiments with the SIRS epidemic model.

linear to the number of graph edges and timesteps. After the
PSD has been estimated, the linear MMSE recovery problems
of interpolation, denoising, and forecasting can be solved in
the same asymptotic complexity. Second, joint stationarity
is a volatile model, able to capture non-trivial statistical
relations in the temporal and vertex domains. Our experiments
suggested that we can model real spatio-temporal processes
as jointly stationary without significant loss. Specifically, the
JWSS prior was found more expressive than (univariate)
TWSS and VWSS priors, and improved upon the multivariate
time stationarity prior when the dimensionality was large but
the samples few.

APPENDIX
A. Deferred proofs

Proof of Theorem [7] By construction of the JFT basis,
X0, 0] captures the DC-offset of a signal, and condition (a)
is equivalent to stating that E[x] = ¢1y7. Moreover, if the

graph is connected and (a) holds, at least one of E {X 11, 7'1]}

and E [X[nz,Tg]] must be zero when ny # ng or T, # To
and

E [X[nl, Tl]X[’I’LQ, 7-2]:|

=E [X[nl, Tl]X[TlQ, TQ}] —E {X[nl, 7'1]:| E [X[ng, 7'2]:|

= (U?EU])[(’H — 1)N + ni, (’7’2 — 1)N + 712}.
Therefore, condition (b) is equivalent to stating that ¥ =
U;DU7 for some diagonal matrix D. In addition, (c) asserts
that D[(1—1)N+n, (1—1)N+n] = h(\,,w,) for every n, 7.
Thus taken together, (b) and (c) state that 3 = U;DU; =

Uj;h(Aq, Ar)U; = h(Lg, L), which is the second moment
condition of a JWSS process. O

Proof of Theorem|2| For the first movement, it is straight-
forward to see that E[X|[n,t]] = c¢ if and only if both

E[X[n,t]] = ¢; and E[X[n,t]] = ¢, Yn,t.

For the second moment, the covariance matrix of a JWSS
process is by definition the linear operator associated to a joint
filter ¥ = h(Lg, Lr). Using (B), X4, ;, can be written as

2t = Usvs(MUG = v5(La), 19)
where 6 = t; —to + 1 and
1 & ,
=7 > (A wr)elr0. (20)
T=1

Hence the process satisfies the (b) statement of Definition |Z|
(TWSS) and [3] (VWSS). Conversely if a process is TWSS
and VWSS, we have X, 1, = 7,4, (La) = 7v5(Lg) with
0 =t; —ta + 1. As a result, using @, its covariance matrix
can be written as a joint filter h(L¢, Lr), where

Z%

and hence satisfies also the property of the second moment of
JWSS processes. O

JWT
)

h(An,wr) 21

Proof of Property 2] The output of a filter f(L;) can be
written in vector form as y = f(Ly). If the input signal x
is JWSS, we can confirm that the first moment of the filter
output is f(Ly)x = f(Ly)xz = f(0,0)E[z], which remain
constant as E[x] is constant by hypothesis. The computation
of the second moment gives

3y =E[f(Ly)z (f(Ly)z)"] - E[h
= f(L,)E[zz"] f(Ls) — f(L
= f(Ly)Zz f(Ly)"
=Uy, (f2(9) hX(a)) Ujv

which satisfies the second moment condition of JWSS process.
O

JE[(f(Ls)z)"]

(Ly)z
1)&E" f(Ly)

Lemma 1. If function h(0) is e-Lipschitz, then the bias is
bounded by

TN
. €
E — <
[E[h0) - n(0)]| < o), 290 =m0l
Proof. Since h(6) is € Lipschitz, we have |h(0) — h(6,, .)| <
€|lf — 0, ||,. Hence, we write
NT
; h(On,r)
E[i6) - ho ‘: o0, 12 nr) _pg
[ [i(0) - n(0)] 3 0000 )
. N
< |ARO) + —7< > 90— 0,:)° 116 = burl
Cg(a) n,7=1
where by definition A = Zn 1 % —1 =20, and the
claim follows. ! O

Lemma 2. If X is a JWSS process such that the entries of
X are independent random variables, the convolutional JPSD



estimate at 0 has variance
} Z g(0 — 0y, T)
cq(0)?

where Var [h(QnT)} is the variance of the sample JPSD
estimator at 0y, ;.

Proof. Set ay, ., = g(0 — 0, +)?h(0,,+)/cy() and E(k) =
mat (€ (k)) = mat(h(Ag, Q)" &), where + denotes the
pseudo-inverse and mat(-) is the matricization operator. The
centered random variable

.. .. — 2
h(0) B [h(6)] = Z L (ecqé’;‘)

E(k)[n T]E(k)[n T
- Qnp

Var[ Vr[h(@ )}, (22)

§ Qn 1 Zn,T

is a weighted sum of centered, identically distributed random
variables z, ;. Moreover, when the elements of E() are
independent, so are the variables z,, .. It follows that,

K

Var [ } Z an - Var Zn T]
= Z 96 Var [h(@ )} )
which matches our claim. O]
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